Effect of the excitation wavelength on the ultrafast charge recombination dynamics of donor-acceptor complexes in polar solvents.
نویسندگان
چکیده
The effect of the excitation wavelength on the charge recombination (CR) dynamics of several donor-acceptor complexes (DACs) composed of benzene derivatives as donors and of tetracyanoethylene or pyromellitic dianhydride as acceptors has been investigated in polar solvents using ultrafast time-resolved spectroscopy. Three different wavelength effects have been observed. (1) With complexes exhibiting two well-separated charge-transfer bands, the CR dynamics was found to be slower by a factor of about 1.5 upon excitation in the high-energy band. This effect was measured in both fast and slow relaxing solvents and was discussed in terms of different DAC geometries. (2) When the CR is faster than diffusive solvation, a slowing down of the CR with increasing excitation wavelength accompanied by an increase of the nonexponential character of the dynamics was measured. This effect appears only when exciting on the red edge of the charge-transfer absorption band. (3) When the driving force for CR is small, both nonequilibrium (hot) and thermally activated CR pathways can be operative. The results obtained with such a complex indicate that the relative contribution of these two paths depends on the excitation wavelength.
منابع مشابه
Solvent and spectral effects in the ultrafast charge recombination dynamics of excited donor-acceptor complexes.
The charge recombination dynamics of excited donor-acceptor complexes consisting of hexamethylbenzene (HMB), pentamethylbenzene (PMB), and isodurene (IDU) as electron donors and tetracyanoethylene (TCNE) as electron acceptor in various polar solvents has been investigated within the framework of the stochastic approach. The model accounts for the reorganization of intramolecular high-frequency ...
متن کاملEffect of the excitation pulse carrier frequency on the ultrafast charge recombination dynamics of donor-acceptor complexes: Stochastic simulations and experiments.
The influence of the excitation pulse carrier frequency on the ultrafast charge recombination dynamics of excited donor-acceptor complexes has been explored both theoretically and experimentally. The theoretical description involves the explicit treatment of both the optical formation of the nuclear wave packet on the excited free energy surface and its ensuing dynamics. The wave packet motion ...
متن کاملNonequilibrium charge recombination from the excited adiabatic state of donor-acceptor complexes.
A model of nonequilibrium charge recombination from an excited adiabatic state of a donor-acceptor complex induced by the nonadiabatic interaction operator is considered. The decay of the excited state population prepared by a short laser pulse is shown to be highly nonexponential. The influence of the excitation pulse carrier frequency on the ultrafast charge recombination dynamics of excited ...
متن کاملSpectroscopic Study of Charge Transfer Complexes of Dibenzo-24-crown-8 (DB24C8) with Iodine in Three Chlorinated Solvents
Charge Transfer (CT) complexes formed between dibenzo-24-crown-8 (DB24C8) as an electron donor with the σ-electron acceptor iodine (I2) in chloroform, dichloromethane, and 1,2-dichloroethane solutions have been studied by different spectroscopic techniques at room temperature. The spectral studies of the complexes were det...
متن کاملUltrafast Luminescence Decay in Rhenium(I) Complexes with Imidazo[4,5-f]-1,10-Phenanthroline Ligands: TDDFT Method
The interpretation of the ultrafast luminescence decay in [Re(Br(CO)3(N^N)] complexes as a new group of chromophoric imidazo[4,5-f]-1,10-phenanthroline ligands, including 1,2-dimethoxy benzene, tert-butyl benzene (L4) and 1,2,3-trimethoxy benzene, tert-butyl benzene (L6), was studied. Fac-[Re(Br(CO)3L4 and L6] with different aryl groups were calculated in singlet and triplet excited states. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 109 37 شماره
صفحات -
تاریخ انتشار 2005